SIMONE *in situ* light scattering and depolarization measurements

Stokes Vector

Advantage: Definition in terms of measurable quantities

Scattering Matrix – Spheres

$$\begin{pmatrix} I_s \\ Q_s \\ U_s \\ V_s \end{pmatrix} = \frac{1}{k^2 r^2} \begin{pmatrix} S_{11} & S_{12} & 0 & 0 \\ S_{12} & S_{11} & 0 & 0 \\ 0 & 0 & S_{33} & S_{34} \\ 0 & 0 & -S_{34} & S_{33} \end{pmatrix} \begin{pmatrix} I_i \\ Q_i \\ U_i \\ V_i \end{pmatrix}$$

Example: incident light is 100% polarized perpendicular to the scattering plane

$$\begin{pmatrix} I_i \\ -I_i \\ 0 \\ 0 \end{pmatrix} \Rightarrow I_s = (S_{11} - S_{12})I_i, \quad Q_s = -I_s, \quad U_s = V_s = 0 \quad \Rightarrow \quad P_l = 1$$

Scattered light is also 100% polarized perpendicular to the scattering plane

Scattering Matrix – Ensemble of non-spherical particles

$$\begin{pmatrix} I_s \\ Q_s \\ U_s \\ V_s \end{pmatrix} = \frac{1}{k^2 r^2} \begin{pmatrix} S_{11} & S_{12} & 0 & 0 \\ S_{12} & S_{22} & 0 & 0 \\ 0 & 0 & S_{33} & S_{34} \\ 0 & 0 & -S_{34} & S_{44} \end{pmatrix} \begin{pmatrix} I_i \\ Q_i \\ U_i \\ V_i \end{pmatrix}$$

Example: incident light is 100% polarized parallel to the scattering plane

$$\begin{pmatrix} I_i \\ I_i \\ 0 \\ 0 \end{pmatrix} \Rightarrow I_s = (S_{11} + S_{12})I_i, \quad Q_s = (S_{12} + S_{22})I_i, \quad U_s = V_s = 0 \quad \Rightarrow \quad P = -\frac{S_{12} + S_{22}}{S_{11} + S_{12}}$$

Scattered light is in general partially polarized, i.e. the incident light is depolarized

How to measure depolarization?

$$\Delta = 1 - \frac{S_{22}}{S_{11}}$$

$$\begin{split} & \lim_{l \neq 1} \inf_{1} \frac{1}{2} S_{12} = \sum_{l \neq 1}^{l} S_{22} \\ & \int_{1}^{l} S_{12} = 2 S_{121}^{l} + S_{22} \\ & \int_{1}^{l} S_{12} = 2 S_{121}^{l} + S_{22} \\ & \int_{1}^{l} S_{12} = 2 S_{121}^{l} + S_{22} \\ & \int_{1}^{l} S_{12} = 2 S_{121}^{l} + S_{22} \\ & \int_{1}^{l} S_{12} = 2 S_{11} \\ & \int_{1}^{l} S_{12} \\ & \int_{1}^{l} S_$$

For scattering angles \neq 180° δ_{H} is a mixture of S_{11} and S_{12}

Emitting Unit 488 nm

Receiving Unit 178.2° AIDA

Growth of sulfuric acid aerosol by water uptake

IN11-44

Ice nucleation on flame soot (CAST) of different organic carbon contents

Ice nucleation activity

CAST soot (medium organic content), coated by sulphuric acid

First experiments with oxalic acid (30/11/07)

IN11, Experiment #40, IN_OxalicAcid, 2007-11-30 13:00:00

U/Eigene Dateien/IDL/SIMONE/simone_plot_activation.pro

Mon Oct 06 16:42:51 2008 U1Eigene Dateien/Kampagnen/IN11/Plots/IN11_40_SIMONE_fittered.ps

microphysical properties of slowly growing ice crystals

IN11, Experiment #40, IN_OxalicAcid, 2007-11-30 13:00:00

Mishchenko & Sassen, 1998

Ice Nucleation on Meteoric Smoke Analogues

Meteor smoke analogue particle generated by the photo-oxidation of iron pentacarbonyl

(Saunders and Plane, 2006)

IN11-60

IN11-60

31.03.2006 1019.688s #1525	6 11:45:00 1022.961s #1527	0.000 ► 1023.471s #1528	1023.993 #1529	80 8 1024.642 #1530	μm s 1025.323s #1531	\$ 1028.006 #1532	\$ 1028.575\$ #1533	\$ 1029.046\$ #1534	1029.936: #1535	s 1030.197 #1536	's 1030.607 #1537	7s 1032.559: #1539	s 1034.: #1542	180s 1036. #1543	562s
1040.075s	1041.306s	1041.697% 1(042.387s 10	042.777s 1	1047.091s	1049.263	s 1050.44	63s 1052.3	75s 1054.427	7s 1055.29	7s 1057.508	3s 1061.513	s 1062.183	s 1062.803	is 1(
#1548	#1549	#1550 #	1551 #1	1552 #	±1554	#1555	#1556	#1558	#1559	#1560	#1561	#1563	#1564	#1565	#:
1069.138s	1069.568s	1069.988s	1071.780:	s 1073.852:	s 1075.374	s 1076.173	3s 1076.644	s 1079.177	s 1080.937s	1085.631s	1086.572s	: 1089.375s	1090.095s	1090.486s	109:
#1572	#1573	#1574	#1575	#1577	#1579	#1580	#1581	#1582	#1584	#1587	#1588	#1589	#1590	#1591	#15
1101.173s	1106.328s	1107.730s	1109.010s	: 1109.850s	1111.962s	1112.813s	1113.493s	1114.704s	1116.346s	1117.217s	1117.927:	s 1120.449s	1122.08	0s <u>1128.</u> 9	515s
#1598	#1602	#1603	#1604	#1605	#1607	#1608	#1609	#1610	#1611	#1612	#1613	#1614	#1615	#1620	
1137.422s	1138.193s	1142.296s	1142.877s	1145.659s	1146.289s	1150.823s	1153.046s	\$ 1154.506	s 1155.388s	1156.187s 1	1156.858s 1	160.842s 11	67.868s 1	174.763s	1176
#1625	#1626	#1627	#1628	#1629	#1630	#1633	#1635	#1636	#1637	#1638	‡1639 #	11640 #1	1642 #	11645	#164
1194.878s	1195.809	9s 1198.762s	: 1203.046s	1210.601s	1212.522s	1226.644s	1228.665s	1229.407	s 1234.250s	1237.632s	1244.278s	1246.620s	1248.361s	1249.252s	126
#1653	#1654	#1655	#1656	#1657	#1659	#1663	#1664	#1665	#1666	#1667	#1668	#1669	#1670	#1671	#16
1269.428s	1270.008	s 1271.019s	1272.430s	1274.172	's 1293.507	s 1294.499s	1299.092	2s 1299.752	2s 1305.257	s 1311.002s	1314.925	5s 1315.435:	\$ 1331.059	s 1335.621	ls 1
#1680	#1681	#1682	#1683	#1684	#1688	#1689	#1692	#1693	#1694	#1696	#1697	#1698	#1701	#1703	#
1377.645s #1710	1447.521s #1715	1459.361s 1 #1718 #	467.927s 15 1719 #:	509.762s 16 1722 #:	546.190s 1724				100		23				

Stokes Vector – Degree of Polarization

$$I^2 \ge Q^2 + U^2 + V^2$$

degree of linear polarization

$$P_l = -\frac{\sqrt{Q^2 + U^2}}{I}$$

degree of circular polarization

$$P_c = \frac{V}{I}$$

Mueller Matrix

matrix of optical element

$$\begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \\ M_{41} & M_{42} & M_{43} & M_{44} \end{pmatrix} \begin{pmatrix} I_i \\ Q_i \\ U_i \\ V_i \end{pmatrix}$$

outgoing vector

incident vector

$$\frac{1}{2}I_{i}\begin{pmatrix}1\\0\\0\\1\end{pmatrix} = \begin{pmatrix}1&0&0&0\\0&0&-1\\0&0&1&0\\0&1&0&0\end{pmatrix} \cdot \frac{1}{2}\begin{pmatrix}1&1&0&0\\1&1&0&0\\0&0&0&0\\0&0&0&0\end{pmatrix} \cdot I_{i}\begin{pmatrix}1\\0\\0\\0\\0\end{pmatrix}$$

$$\lambda/4 \text{ retarder} \qquad \text{linear polarizer}$$

Scattering Matrix

General matrix $\begin{pmatrix}
I_{s} \\
Q_{s} \\
U_{s} \\
V_{s}
\end{pmatrix} = \frac{1}{k^{2}r^{2}} \begin{pmatrix}
S_{11} & S_{12} & S_{13} & S_{14} \\
S_{21} & S_{22} & S_{23} & S_{24} \\
S_{31} & S_{32} & S_{33} & S_{34} \\
S_{41} & S_{42} & S_{43} & S_{44}
\end{pmatrix} \begin{pmatrix}
I_{i} \\
Q_{i} \\
U_{i} \\
V_{i}
\end{pmatrix}$

for nonpolarized incident light:

$$\frac{I_s}{I_i} = S_{11}, \frac{Q_s}{I_i} = S_{21}, \frac{U_s}{I_i} = S_{31}, \frac{V_s}{I_i} = S_{41}$$

→ light scattering in general induces polarization !

Scattering Matrix – Symmetry

- 4x4 matrix contains all information about angular scattering by a medium
- defined by size, shape and material of the particles
- Single-particle symmetry or media that are invariant under rotation and reflection reduces the number of non-zero and independent matrix elements

$$\begin{pmatrix} S_{11} & S_{12} & 0 & 0 \\ S_{12} & S_{11} & 0 & 0 \\ 0 & 0 & S_{33} & S_{34} \\ 0 & 0 & -S_{34} & S_{33} \end{pmatrix}$$

$$\begin{pmatrix} S_{11} & S_{12} & 0 & 0 \\ S_{12} & S_{22} & 0 & 0 \\ 0 & 0 & S_{33} & S_{34} \\ 0 & 0 & -S_{34} & S_{44} \end{pmatrix}$$

isotropic sphere

ensemble of non-spherical particles

Scattering Matrix – Spheres

$$\begin{pmatrix} I_s \\ Q_s \\ U_s \\ V_s \end{pmatrix} = \frac{1}{k^2 r^2} \begin{pmatrix} S_{11} & S_{12} & 0 & 0 \\ S_{12} & S_{11} & 0 & 0 \\ 0 & 0 & S_{33} & S_{34} \\ 0 & 0 & -S_{34} & S_{33} \end{pmatrix} \begin{pmatrix} I_i \\ Q_i \\ U_i \\ V_i \end{pmatrix}$$

Example: incident light is 100% polarized parallel to the scattering plane

$$\begin{pmatrix} I_i \\ I_i \\ 0 \\ 0 \end{pmatrix} \Rightarrow I_s = (S_{11} + S_{12})I_i, \quad Q_s = I_s, \quad U_s = V_s = 0 \quad \Rightarrow \quad P_l = -1$$

Scattered light is also 100% polarized parallel to the scattering plane

Scattering Matrix – Spheres

$$\begin{pmatrix} I_s \\ Q_s \\ U_s \\ V_s \end{pmatrix} = \frac{1}{k^2 r^2} \begin{pmatrix} S_{11} & S_{12} & 0 & 0 \\ S_{12} & S_{11} & 0 & 0 \\ 0 & 0 & S_{33} & S_{34} \\ 0 & 0 & -S_{34} & S_{33} \end{pmatrix} \begin{pmatrix} I_i \\ Q_i \\ U_i \\ V_i \end{pmatrix}$$

Example: incident light is nonpolarized

$$\begin{pmatrix} I_i \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow I_s = S_{11}I_i, \quad Q_s = S_{12}I_i, \quad U_s = V_s = 0 \quad \Rightarrow \quad P = -\frac{S_{12}}{S_{11}}$$

Scattered light is partially polarized

Zakharova & Mishchenko, 2000

parallel polarised (extraordinary) rays power: 1W

Transition of Contrails into Cirrus Clouds

In situ measurements of ice crystal number size distributions

Schröder et al., 2000

Evolution of contrails probed by polarization LIDAR

Table 1.	Characteristics	of	selected	SUCCESS	contrails

Date	Date Time		Τ _α	ΔZ	Age	Δ	Comment	
	UTC	km	°C	m	min			
21 Apr	1948:00	11.26	-56.8	66	0.5	0.65	DC-8	
21 Apr	1949:30	11.19	-56.3	114	2.0	0.49	DC-8	
21 Apr	1953:30	11.38	-57.8	84	6.0	0.38	DC-8	
23 Apr	1952:00	11.90	-67.4	582	≥60	0.38	Corona	
23 Apr	2110:00	12.24	-65.7	462	≥60	0.34	Subvisual	
23 Apr	2233:00	12.27	-67.0	282	≥60	0.61	Corona	
23 Apr	2303:00	12.34	-67.4	138	≥60	0.68	Subvisual	
23 Apr	2316:00	12.25	-67.2	162	≥60	0.62	Corona	
2 May	2001:20	11.75	-61.3	246	≥45	0.33	Thin	
2 May	2030:00	11.76	-61.3	90	≥45	0.31	Thin	

Sassen & Hsueh, 1998