nospheric and Climate Science

nstitute f

Glaciation effec

Conclusion

Extra

1 / 29

ETH Contributions to VI-ACI (M2/M3)

Ulrike Lohmann

ETH Zurich Institute for Atmospheric and Climate Science

> Karlsruhe, 14.5.2007

Contributions from Corinna Hoose and Peter Spichtinger

Contribution to M2: Impact of dynamics for cirrus (Peter Spichtinger)

Contribution to M3: First indirect aerosol effect simulations with ECHAM5

Glaciation effect in mixed-phase clouds

Conclusions

Extra

Measurements from the CIRRUS II Campaign: Up to 50-80 ice crystals cm⁻³, large-scale motion: w = 3cm/s

These cirrus probably formed due to strong wind shear and the presence of neutral layers

Ulrike Lohmann (IACETH) ETH Contributions to VI-ACI (M2/M3)

Atmospheric and Climate Science

Institute for

Internal Dynamics in Cirrus

EULAG 2D simulation with bulk ice microphysics w = 5cm/s, stable stratification, t= 000 min


```
w = 5cm/s, stable stratification, t= 030 min
```



```
w = 5cm/s, stable stratification,
t = 060 min
```


w = 5cm/s, stable stratification, t= 090 min

Atmospheric and Climate Science

IAC*ET* Institute for

$$w = 5cm/s$$
, stable stratification,
t= 120 min

w = 5cm/s, neutral stratification t=000min

Internal Dynamics in Cirrus

w = 5cm/s, neutral stratification t=010min

$$w = 5cm/s$$
, neutral stratification t=020min

$$w = 5cm/s$$
, neutral stratification t=030min

Global modeling

Glaciation effect

Extra

Internal Dynamics in Cirrus

w = 5cm/s, neutral stratification t=040min

$$w = 5cm/s$$
, neutral stratification t=050min

$$w = 5cm/s$$
, neutral stratification t=060min

$$w = 5cm/s$$
, neutral stratification t=070min

Internal Dynamics in Cirrus

w = 5cm/s, neutral stratification t=080min

Internal Dynamics in Cirrus

w = 5cm/s, neutral stratification t=090min

w = 5cm/s, neutral stratification t=100min

$$w = 5cm/s$$
, neutral stratification t=110min

$$w = 5cm/s$$
, neutral stratification t=120min

IACETH Institute for Atmospheric and Climate Science

Glaciation effect

Internal Dynamics in Cirrus

Comparison: Large difference due to internal dynamics

ETH Contributions to VI-ACI (M2/M3)

Model set-up in ECHAM5 [Lohmann et al., ACPD, 2007]

- ECHAM5 global climate model (Roeckner et al., 2003)
- ▶ 5-year simulations in T42 resolution ($2.8^{\circ}x \ 2.8^{\circ}$), 19 levels
- 2-moment aerosol scheme ECHAM5-HAM (Stier et al., 2005)
- 4 pairs of simulations:
 - ECHAM5-RH: Using a relative humidity based cloud cover scheme (Sundqvist et al., 1989)
 - ECHAM5-COV: Using a statistical cloud cover scheme (Tompkins, 2002)
 - ► ECHAM5-1985: Using the 1985 aerosol emissions (Liousse et al., 1996) instead of 2000 (Dentener et al., 2006)
 - ECHAM5-CIR: As ECHAM5-RH with cirrus scheme (preliminary!)
 - ► ECHAM4: As ECHAM5-1985 with cirrus scheme
 - Each simulation pair is run with present-day and pre-industrial (1750) aerosol emissions

Conclusions

Extra

Global aerosol sources [Stier et al., ACP, 2005]

Ulrike Lohmann (IACETH) E

ETH Contributions to VI-ACI (M2/M3)

Cloud modelling

Global modeling

Glaciation effec

Conclusion

Extra

Climate model validation

heric and Climate Science

Institute for

Global modeling 00000000

Vertical distribution of black carbon and total

aerosol mass in Texas [Obs. from Schwarz et al., JGR, 2006]

Cloud modelling

Glaciation effect

Extra

Liquid (LWC), ice (IWC) and total water content (TWC) in mixed-phase clouds [Observations from Korolev et al., QJ, 2003]

 Cloud modelling
 Global modeling
 Glaciation effect
 Conclusions
 E

 0000
 00000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0<

Frequency distribution of supersaturation with respect to ice

[Observations from Gierens et al., 1999]

heric and Climate Science OSOU Institute for

Ulrike Lohmann (IACETH) ETH Contributions to VI-ACI (M2/M3) Karlsruhe, 14.5.2007

Cloud modelling

IAC*ETH* Institute for Atmospheric and Climate Science

Global modeling

Glaciation effect

Extra

Annual zonal mean changes present - 1750

Ulrike Lohmann (IACETH) ETH Contributions to VI-ACI (M2/M3) Karlsruhe, 14.5.2007 13 / 29

Extra

Global annual mean changes present-day - 1750

			1	
EC5	EC5	EC5	EC5	EC4
-RH	-COV	-1985	-CIR	
0.04	0.042	0.035	0.04	0.037
6.5	9.2	13.6	6.4	12.7
0.18	0.18	0.30	0.14	0.10
1.0	1.4	3.6	1.0	4.1
0.06	0.04	0.13	0.01	0.03
0.5	1.0	1.0	0.3	0.1
-0.004	-0.011	-0.022	-0.01	-0.05
-2.0	-3.2	-3.1	-1.8	-1.8
0.2	0.3	0.4	-0.1	0.7
-1.8	-2.9	-2.8	-1.9	-1.0
	EC5 -RH 0.04 6.5 0.18 1.0 0.06 0.5 -0.004 -2.0 0.2 -1.8	EC5EC5-RH-COV0.040.0426.59.20.180.181.01.40.060.040.51.0-0.004-0.011-2.0-3.20.20.3-1.8-2.9	EC5EC5EC5-RH-COV-19850.040.0420.0356.59.213.60.180.180.301.01.43.60.060.040.130.51.01.0-0.004-0.011-0.022-2.0-3.2-3.10.20.30.4-1.8-2.9-2.8	EC5EC5EC5EC5-RH-COV-1985-CIR0.040.0420.0350.046.59.213.66.40.180.180.300.141.01.43.61.00.060.040.130.010.51.01.00.3-0.004-0.011-0.022-0.01-2.0-3.2-3.1-1.80.20.30.4-0.1-1.8-2.9-2.8-1.9

Global modeling

Glaciation effect

Extra

Glaciation indirect aerosol effect

Heterogeneous freezing

- Mixed-phase clouds (-38°C<T<0°C)
- In ECHAM5-HAM: only contact and immersion freezing, dust and black carbon

Median freezing temperatures for different IN from lab experiments. Drop radii 250-350 µm. Adapted from *Diehl et al.* (2005).

• IN efficiencies depend on material and drop volume

Extra

Number concentration of different aerosols

Figure: Annual zonal mean latitude-height cross-sections

Cloud modelling

Global modeling

Glaciation effect

Extra

Annual zonal mean indirect aerosol effect

Table: Global annual mean changes \pm interannual standard deviations of liquid water path (Δ LWP, g m⁻²), ice water path (Δ IWP, g m⁻²), total cloud cover (Δ TCC, %), precipitation (Δ PR, mm d⁻¹), shortwave (Δ F_{SW}, W m⁻²), longwave (Δ F_{LW}, W m⁻²) and net TOA radiation (Δ F_{net}, W m⁻²) between pre-industrial and present-day in ECHAM4 [Lohmann and Diehl, JAS, 2006].

Simulation	CTL	KAO	MON
ΔLWP	10.5±0.7	9.8±0.6	12.7±0.4
ΔIWP	0.2±0.1	0.4±0.04	$0.1{\pm}0.03$
ΔΤCC	0.1±0.4	-1.0±0.3	0.1±0.2
ΔPR	$-0.05 {\pm} 0.01$	$0.005{\pm}0.01$	$-0.05 {\pm} 0.01$
ΔF_{SW}	-1.6±0.4	-0.2±0.2	$-1.8{\pm}0.1$
ΔF_{LW}	0.6±0.3	-1.8±0.2	0.7±0.2
ΔF_{net}	-1.0±0.3	-2.0±0.2	-1.0±0.2

Conclusions

Extra

Next step: Allow different mineral dusts for freezing

Figure: Ina Tegen/Corinna Hoose, pers. comm.

Conclusions and outlook

- Cloud modelling: Temperature fluctuations in neutral layers induce vertical updrafts; ice crystals form; due to latent heat release small convective cells occur
- ► Global results: The indirect aerosol effect in ECHAM5 with a relative humidity based cloud cover scheme is similar as in ECHAM4 (~ -1.8 W m⁻²). It is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed.
- The importance of the glaciation indirect effect is currently being tested in ECHAM5 (work by Corinna Hoose)
- Cloud processing is currently being developed for ECHAM5 (work by Corinna Hoose)

nospheric and Climate Science

Ath

Global modelin

Glaciation effect

Conclusions

Extra

Aerosol processing

ospheric and Climate Science

ECHAM5-HAM with aerosol processing

Coupling to cloud microphysics:

- uptake by nucleation and collisions
- transfer droplet-crystal: freezing (and melting)
- upon droplet/crystal evaporation: release as one bigger particle, attribution to correct interstitial mode

	Median r[µm]	Internally mixed	Externally mixed
Nucleation	r<0.005	N ₁ , M ₁ ^{su}	
Aitken	0.005 <r<0.05< th=""><th>$M_2, M_2^{SU}, M_2^{BC}, M_2^{POM}$</th><th>N₅, M₅^{BC}, M₅^{POM}</th></r<0.05<>	$M_2, M_2^{SU}, M_2^{BC}, M_2^{POM}$	N ₅ , M ₅ ^{BC} , M ₅ ^{POM}
Accumulation	0.05 <r<0.5< th=""><th>N₃, M₃^{SU}, M₃^{BC}, M₃^{POM}, M₃^{SS}, M₃^{DU}</th><th>N₆, M₆^{DU}</th></r<0.5<>	N ₃ , M ₃ ^{SU} , M ₃ ^{BC} , M ₃ ^{POM} , M ₃ ^{SS} , M ₃ ^{DU}	N ₆ , M ₆ ^{DU}
Coars e	0.5 <r< th=""><th>M_4, M_4^{SU}, M_4^{BC}, M_4^{POM}, M_4^{SS}, M_4^{DU}</th><th>N₇, M₇^{DU}</th></r<>	M_4 , M_4^{SU} , M_4^{BC} , M_4^{POM} , M_4^{SS} , M_4^{DU}	N ₇ , M ₇ ^{DU}
in-dropl e t		N ₈ , M ₈ ^{SU} , M ₈ ^{BC} , M ₈ ^{POM} , M ₈ ^{SS} , M ₈ ^{DU}	
in-crystal		N ₉ , M ₉ ^{SU} , M ₉ ^{BC} , M ₉ ^{POM} , M ₉ ^{SS} , M ₉ ^{DU}	

Global modeling

Glaciation effec

Conclusion

Extra

Size distributions in liquid cloud

Ulrike Lohmann (IACETH) ETH Contributions to VI-ACI (M2/M3) Karlsruhe, 14.5.2007 25 / 29

Ulrike Lohmann (IACETH) ETH Contributions to VI-ACI (M2/M3)

Karlsruhe, 14.5.2007 26 / 29

Sensitivity Simulations [Lohmann and Diehl, JAS, 2006]

- 10 year simulations with ECHAM4 in T30 horizontal resolution with 19 vertical levels after 3 months spin-up
- Double moment cloud microphysics scheme
- Dust and soot act as contact and immersion nuclei

Simulation	Description
MON	Assuming dust to be composed of montmoril-
	lonite (better freezing nuclei)
KAO	Assuming dust to be composed of kaolinite
	(worse freezing nuclei)
CTL	Reference simulation, in which both contact and
	immersion freezing are independent of the chem-
	ical composition of the ice nuclei

Atmospheric and Climate Science

ACE1 Institute for Glaciation effect

Internal Dynamics in Cirrus

t=000min

Internal Dynamics in Cirrus

t=010min

Atmospheric and Climate Science

t=020min

Internal Dynamics in Cirrus

t=030min

Internal Dynamics in Cirrus

t=040min

Atmospheric and Climate Science

Internal Dynamics in Cirrus

t=050min

Atmospheric and Climate Science

IACE7 Institute for Glaciation effect

Internal Dynamics in Cirrus

t=060min

nospheric and Climate Science

A A

IACE7 Institute for Glaciation effect

Internal Dynamics in Cirrus

t=070min

Atmospheric and Climate Science

IACE7 Institute for Glaciation effect

Internal Dynamics in Cirrus

t=080min

nospheric and Climate Science

Å

IACE7 Institute for

Internal Dynamics in Cirrus

t=090min

Internal Dynamics in Cirrus

t=100min

Internal Dynamics in Cirrus

t=110min

nospheric and Climate Science

Å

IACE7 Institute for Global modeling

Glaciation effect

Conclusions

Extra

Internal Dynamics in Cirrus

t=120min

