Tel Aviv University contribution

Zev Levin and Karin Ardon

FRIDGE (isothermal static diffusion chamber) studies on:

- Immersion freezing (South Pole samples)
- Deposition and condensation freezing (Tel Aviv campus samples)
- Intercomparison FRIDGES TAU vs. FRA on AIDA samples (deposition + condensation freezing)
- AIDA (fall 2009): SOA vs. Ambient aerosol

Calculation of the concentrations of Immersion Freezing nuclei in the air (#/L) - modified from Vali (1971):

$$K'(\theta) = \frac{1}{V} * \left[\ln(N_0) - \ln(N(\theta)) \right] * \frac{x}{y}$$

 $K'(\theta)$ – Cumulative concentration of FN in the air, active at temperature θ (#/L) V – Volume of drop (L)

- No Total number of measured drops
- N (θ) Number of unfrozen drop at temperature θ
- x The volume of water used to remove the aerosols from the filter (L)
- y The volume of air sampled through the filter (L)

Immersion Freezing

Comparison between measurements taken on the rooftop and with balloon

Measurements in Israel at -18°c at water saturation

Comparison from Aida measurements (ACI03)

Comparison from Aida measurements (ACI03)

measurements from Aida (ACI03)

Saturation ratio with respect to water

Saturation ratio with respect to ice