#### Julian Skrotzki<sup>1,2</sup>, Harald Saathoff<sup>2</sup>, Volker Ebert<sup>1,3</sup>

<sup>1</sup> Institute of Physical Chemistry, Heidelberg University

<sup>2</sup> Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology

<sup>3</sup> Department 3.2 (National Water Standards), Physikalisch-Technische Bundesanstalt, Braunschweig

May, 10<sup>th</sup>/11<sup>th</sup>, VI-ACI annual meeting, Zürich



# TDL water measurements at AIDA – recent developments and applications

## Outline

- AIDA-TDL overview
- Recent instrumental progression
- Application to cloud micro physics
- Summary & Outlook



#### **AIDA-TDL overview**

#### In situ measurement of water vapor:

White cell with TDL absorption spectrometer (APicT)
 New: Single path TDL (SP-APicT) for high concentrations

#### Measurement of total water

Extractive TDL absorption spectrometer (APeT)

- Sampling via heated (30 °C) stainless steel tubes
- TDLAS based measurement of condensed water
  Difference between total water and in situ water vapor

3

### **Progress of the in situ TDL (APicT)**



4 May, 10<sup>th</sup>/11<sup>th</sup>, VI-ACI annual meeting, Zürich



## **TDLAS increased dynamic range**

Goal: from 2000 ppm to 10000 ppm

#### Two possibilities for high water concentrations

- Switch to weaker absorption line
  - $\Rightarrow$  strong interference with adjacent lines
  - $\Rightarrow$  systematic uncertainties, complicated fitting
- Decrease of optical path length ⇒ SP-APicT Additional advantage: low scattering losses ⇒ denser clouds





### Single-path APicT





- Optical path length: 4.11 m
- Fiber-coupled optics inside AIDA chamber
- Minimized parasitic absorption





## Single-path APicT – inside view





Laser side

Detector side

7 May, 10<sup>th</sup>/11<sup>th</sup>, VI-ACI annual meeting, Zürich



# Single-path APicT – outside view







#### **SP-APicT** at high concentrations



Upper measurement limit above 12 000 ppm (10 °C DP)



#### Signal robustness vs. scattering losses



- Very good signal robustness of SP-APicT during ice cloud phases compared to APicT (signal loss factor 3-4 lower)
- Difference in transmission corresponds to a calculated length ratio of 6 (real ratio 5)

10 May, 10<sup>th</sup>/11<sup>th</sup>, VI-ACI annual meeting, Zürich



#### Intercomparison SP-APicT vs. APicT



Excellent agreement between SP-APicT and APicT (independent instruments, no scaling of data)



#### Intercomparison SP-APicT vs. APicT



- Excellent agreement between SP-APicT and APicT (independent instruments, no scaling of data)
- Small deviations during ice cloud phases

12 May, 10<sup>th</sup>/11<sup>th</sup>, VI-ACI annual meeting, Zürich



# TDL performance 1.4 µm

|          | Opt. path | Dynamic range | Resolution            | Application           |
|----------|-----------|---------------|-----------------------|-----------------------|
| APicT    | 23-99 m   | <1-2000 ppm   | 15 ppb<br>-100 °C FP  | Cold clouds           |
| SP-APicT | ~ 4 m     | 10-12000 ppm  | ~250 ppb<br>-85 °C FP | Warm, dense<br>clouds |
| APeT     | ~ 30 m    | <1-1500 ppm   | 25 ppb<br>-97 °C FP   | Total water           |

#### Advantages of SP-APicT:

- Six times higher upper limit of dynamic range compared to APicT
- Measurement in denser clouds possible







## **Application to cloud microphysics**

Меа

TABLE II: Known Condensation Coefficient Measurements versus Temperature Using Direct Condensation Techniques

| α                      | temp range, K | method                    | ref |
|------------------------|---------------|---------------------------|-----|
| unity                  | 213-233       | gravimetric               | 3   |
| $0.83 \pm 0.15$        | 133-158       | gravimetric               | 5   |
| 0.06                   | 193-223       | ice crystal radial growth | 11  |
| $0.1 < \alpha < 0.50$  | 163-183       | ice crystal radial growth | 11  |
| 0.026                  | 295-298       | droplet radial growth     | 19  |
| 0.033                  | 188-213       | droplet radial growth     | 7   |
| 0.98                   | 293           | vapor loss                | 22  |
| $0.8 < \alpha < 0.99$  | 138-152       | gravimetric               | 36  |
| $0.7 < \alpha < unity$ | 280           | vapor loss                | 8   |
| 0.04                   | 293           | liquid film growth        | 37  |
| 0.3 (+0.7, -0.1)       | 200           | vapor flow loss           | 9   |
| $1.0 \pm 0.1$          | 150           | IR absorption             | 38  |

D. R. Haynes, N. J. Tro, and S. M. George, J. Phys. Chem. 1992, 96,8502-8509





)f





#### **Summary & Outlook**

#### Instrumental progress:

- Direct attachment of the APicT-optics to AIDA  $\Rightarrow$  higher accuracy
- SP-APicT extends dynamic range to higher water vapor concentrations and allows measurements in dense clouds
- TDL measurements are applied to the determination of the accommodation coefficient of water molecules on ice ⇒ further modeling work necessary

#### Outlook:

May, 10th/11th, VI-ACI annual meeting, Zürich

16

- Validation of the extractive TDL (APeT) at the PTB with primary humidity standard of Germany
- 2.6 µm TDLs for higher sensitivity/resolution (sub ppb)



### Acknowledgements

- Ottmar Möhler and the entire AIDA team
- Technical staff at IMK-AAF
- Workshops at PCI and IMK
- Steven Wagner (PCI/TUD, Software)

