OPTICAL MEASUREMENTS OF ICE CRYSTALS WITH SID3-LISA

FIRST RESULTS FROM ACI'03 AND FROST EXPERIMENTS

A. Kiselev, IfT, Leipzig

VI-ACI Meeting on 10-11 May 2010, ETH

Why yet another OPC?

- 2
- Existing commercial instruments (e.g. WELAS) allow for particle size determination; it's OK if ice particles have time to grow (AIDA), but in LACIS it is not the case.
- Therefore, there is a need for reliable detection of ice particles in the presence of droplets and seed aerosol.
- Home-made instrument (TOPS-Ice) allow for ice detection based on ice crystal non-sphericity but delivers no shape information.
- Possibility to register 2D scattering patterns would permit crystal shape classification AND provide valuable data on optical properties of individual ice crystals (validation of scattering codes with respect to backscattering)

Optical Layout SID3-LISA Small Ice Detector – LACIS Ice Scattering Apparatus

Optical Layout SID3-LISA

4

Optical Layout SID3-LISA

HELMHOLTZ

GEMEINSCHAFT

VI-ACI Meeting 10-11 May 2010, ETH Zürich

Part I: 2D scattering pattern analysis

HELMHOLTZ VI-ACI Meeting 10-11 May 2010, ETH Zürich

A. Kiselev, IfT

What do we do with all this images???

HELMHOLTZ

Symmetry type detection

- 1. Divide image into segments
- 2. Define mean pixel value in every segment
- 3. Sum up pixel values along the radial and angular coordinates
- 4. Take the variance

Rings & stars

VI-ACI Meeting 10-11 May 2010, ETH Zürich

A. Kiselev, IfT

9

A

HELMHOLTZ

GEMEINSCHAFT

Some rings are not quite rings, and some stars are not quite stars...

10

Counting the ice particles: results from FROST 2 experiment

11

HELMHOLTZ

- Image transfer rate is limited to 20 Hz
- Counting with correction is possible up to approx. 16 - 17 Hz

Time series of droplets / ice populations during the cooling cycle of LACIS

Counting the ice particles: results from FROST 2 experiment

13

HELMHOLTZ

- ATD 300nm uncoated
- Immersion freezing of water droplets

ACI03 Exp. 23

14

HELMHOLTZ

GEMEINSCHAFT

CAST soot
AIDA at -40°C
No droplets

LISA vs. SIMONE: ACI03 - Exp. 23

Non-spherical shapes: comparison with precalculated patterns?

2D scattering patterns calculated with RTDF (Kaye et al. Opt. Lett., 33(13), 2008.

ACI03, Exp. 29, LISA

VI-ACI Meeting 10-11 May 2010, ETH Zürich

But what do we do with irregular patterns?

Possible approaches:

- Measurements with ice analogs
- Calculations of scattering patterns for irregular crystal shapes
- Combined measurements with PHIPS / CPI / ...?

•???

Part II: Circular Depolarization analysis

VI-ACI Meeting 10-11 May 2010, ETH Zürich

HELMHOLTZ

GEMEINSCHAFT

How we define the circular depolarization:

19

HELMHOLTZ

$$\begin{array}{l} \text{Stokes vector} \\ \text{of incident light} \end{array} & S_{0} = \begin{bmatrix} I_{0} \\ Q_{0} \\ U_{0} \\ V_{0} \end{bmatrix} \end{array} \\ \begin{array}{l} \text{Stokes vector} \\ \text{of scattered light} \end{array} & S_{s} = \begin{bmatrix} I_{s} \\ Q_{s} \\ U_{s} \\ V_{s} \end{bmatrix} \end{aligned} \\ \begin{array}{l} \text{Stokes vector} \\ \text{of scattered light} \end{aligned} & S_{s}^{QWP} = \begin{bmatrix} I_{s}' \\ Q_{s}' \\ U_{s}' \\ V_{s}' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} I_{s} \\ Q_{s} \\ U_{s} \\ V_{s} \end{bmatrix} = \begin{bmatrix} I_{s} \\ -V_{s} \\ U_{s} \\ Q_{s} \\ V_{s} \end{bmatrix} = \begin{bmatrix} I_{s} \\ U_{s} \\ U_{s} \\ Q_{s} \end{bmatrix}$$
 \\ \begin{array}{l} \text{Linear depolarization of light} \\ \text{passed through a QWP} \end{aligned} & \delta_{L}^{QWP} = \frac{PMT_{2}}{PMT_{3}} = \frac{I_{s}' - Q_{s}'}{I_{s}' + Q_{s}'} = \frac{I_{s} + V_{s}}{I_{s} - V_{s}} = \delta_{C} \end{array}

Depolarization on droplets: "small" droplets

20

HELMHOLTZ

GEMEINSCHAFT

VI-ACI Meeting 10-11 May 2010, ETH Zürich

A. Kiselev, IfT

Depolarization on droplets: "large" droplets

VI-ACI Meeting 10-11 May 2010, ETH Zürich

HELMHOLTZ

GEMEINSCHAFT

A. Kiselev, IfT

δ_{c} calculated for backscattering geometry in LISA for water droplets:

Calculations with Mie theory:

scattering into angle range 166° to 172°

λ = 532.8 nm

Depolarization on "frozen droplets"

Frozen droplets or evaporating crystals?

HELMHOLTZ

ACI03 exp 29

VI-ACI Meeting 10-11 May 2010, ETH Zürich **GEMEINSCHAFT**

A. Kiselev, IfT

Depolarization on ice columns

Depolarization on hexagonal plates

ACI03 exp 29

A. Kiselev, IfT

Understanding the high values of δ_c for hexagonal plates:

VI-ACI Meeting 10-11 May 2010, ETH Zürich

GEMEINSCHAFT

So what we already can do with LISA?

27

D 2D scattering patterns

- size measurements of spherical particles above 2 μm (by fitting the number of rings) if refraction index is known
- determination of fraction of ice particles in the presence of droplets, if the total rate of image acquisition is below 20 sec⁻¹
- ice shape determination, if the relationships (theoretical or empirical) between shape, orientation and 2D scattering pattern are known (hex plates, columns and "frozen drops")
- Rapid classification of ice crystal shapes for several types of habits
- Backscattering
 - Measuring of circular depolarization for ice crystals of known shape and orientation
 - Providing additional parameter for statistical classification of the detected particles

Future work

- D scattering patterns
 - Further development of automatic image classification (improving preprocession, etc.)
 - Adding automatic size evaluation for spherical particles
 - Retrieval of complex shapes from 2D scattering patterns (collaboration with HU)
 - Statistical evaluation of all experiments from FROST and ACI-03
 - Comparison with data from SID3-AIDA
- Backscattering
 - Improving accuracy of the measurements (noise correction)
 - Comparing measured δ_c for crystals with known shape and orientation with scattering codes (collaboration with HU – RTDF)
 - Statistical evaluation of data collected during FROST and ACI03 experiments

