Novel method of generation of $Ca(HCO_3)_2$ and $CaCO_3$ aerosols.

Determination of hygroscopic and cloud condensation nuclei activation properties.

D. F. Zhao, A. Buchholz, <u>Th. F. Mentel</u>, K.-P. Müller, J. Borchardt, A. Kiendler-Scharr, C. Spindler, R. Tillmann, A. Trimborn, T. Zhu, A. Wahner

Achievements so far

We build / developed / modified

Hygroscopicity Tandem DMA
Scanning CCN-Spectrometer
CCN-Spectrometer layout for Zeppelin flights

PhD thesis, Angela Buchholz (August 2010) Diploma thesis (FH), Linda Strathmann (September 2009)

Applications / Publications : LACIS (CCN, HTDMA) AIDA (CCN, HTDMA) JPAC (CCN, HTDMA, AMS) -> Lang-Yona et al., ACPD 2010 CaCO₃ (CCN, HTDMA, AMS) -> Zhao et al., ACPD 2010

Open: experiments of IN modification in SAPHIR (long term natural chemical ageing).

Introduction

Task:

Generate sufficient CaCO₃ particles in the x100 nm size range to fill the Jülich Large Aerosol Chamber (V ~ 250 m³) in a reasonable time (1h).

Goal:

Substrate for chemical studies and physico-chemical studies

Analytical tools: HG, hygroscopicity tandem differential mobility analyzer CCN, scanning CCN-spectrometer "Composition": Q-AMS

Chemistry and Thermal Composition

 $CaCO_3(s)+CO_2+H_2O \longrightarrow Ca(HCO_3)_2(aq)$

weathering of rocks

Ca(HCO₃)₂ becomes instable at 300°C

 $Ca(HCO_3)_2(s) \longrightarrow CaCO_3(s) + CO_2 + H_2O$ decay at 300°C

CaCO₃ becomes instable at 900°C Ca(HCO₃)₂(s) \longrightarrow CaO(s)+2CO₂+H₂O decay at 900°C

 $CaCO_3(s) \longrightarrow CaO(s) + CO_2$

decay at 900°C

The Ca(HCO₃)₂ Solution and Setup

The Fresh Ca(HCO₃)₂ Aerosol

Size Selection and Annealing in Tube Furnace

Effective density: comparison with mass modal diameter in Q-AMS measurements

Ϙ _{p22°C}	= 1.8 g/cm ³
Ϙ _{p300°C}	= 1.8 g/cm ³
ρ _{Calcite}	= 2.71 g/cm ³
ρ _{Aragonite}	= 2.83 g/cm ³

After Drying

After Annealing at 300°C

(b)

Analysis by Q-AMS

100% transmission (60-600 nm), aerodynamic sizing, linear mass signal.

Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles. Jayne et al., Aerosol Science and Technology 33:1-2(49-70), 2000.

Analysis by Q-AMS

CO₂: m/z=44

H₂O: m/z=18

mass(CO₂) -> mole number CO₂ mass(H₂O) -> mole number H₂O

Take Advantage of Thermal Properties of Ca(HCO₃)₂ / CaCO₃ System

 $Ca(HCO_{3})_{2}(s) \longrightarrow CaCO_{3}(s)+CO_{2}+H_{2}O \qquad \text{decay at } 300^{\circ}C$ $Ca(HCO_{3})_{2}(s) \longrightarrow CaO(s)+2CO_{2}+H_{2}O \qquad \text{decay at } 900^{\circ}C$ $CaCO_{3}(s) \longrightarrow CaO(s)+CO_{2} \qquad \text{decay at } 900^{\circ}C$

Normalization of Q-AMS data to SMPS data

Q-AMS does not evaporate CaO – no measure of total mass

To compensate for fluctuations during generation: normalizing to SMPS volume !

SMPS volume – ρ_p -> particle mass

Particle mass -> molar Ca content

- fresh: Ca(HCO₃)₂
- annealed: CaCO₃

Normalization to Ca -> collection effiency of the Q-AMS

$$Ca(HCO_3)_2(s) \longrightarrow CaCO_3(s) + CO_2 + H_2O$$

decay at 300°C

 $CaCO_3(s) \longrightarrow CaO(s) + CO_2$

decay at 900°C

 $Ca(HCO_3)_2(s) \longrightarrow CaO(s) + 2CO_2 + H_2O$ decay at 900°C

Analysis by Q-AMS

AMS vaporizer	Case 1	Case 2
300°C	H ₂ O:CO ₂ – 1 : 1	H ₂ O:CO ₂ – 0 : 0
AMS vaporizer	Case 3	Case 4
900°C	H ₂ O:CO ₂ – 1 : 2	H ₂ O:CO ₂ – 0 : 1

Results Q-AMS Analysis

 $Ca(HCO_3)_2$ fresh, dry aerosol: annealed aerosol: CaCO₃ 22°(Tube Bypass oven 300°C Collection efficiency Ca(HCO₃)₂: 0.5 **Collection efficiency CaCO₃: 1.0** Case 1 Case 2 AMS vaporizer 300°C CE: 0.5 CE: ?? Case 4 Case 3 AMS vaporizer CE: 1 900°C CE: 0.5

Results Q-AMS Analysis

Hygroscopic Growth of Ca(HCO₃)₂ and CaCO₃

 $D_e = 150$ nm, measurement errors: saturation ratio ±0.014, GF ±0.005

Droplet Activation of Ca(HCO₃)₂ and CaCO₃

Ca(HCO₃)₂ filled: CaCO₃ open: Sullivan et al. 2009) Ca(HCO₃)₂ wet pre-processed Ca(NO₃)₂ (Sullivan et al. 2009)

Supersaturation: 0.2%, CaCO3

Long Term Persistance of Ca(HCO₃)₂ and CaCO₃

 $D_e = 150$ nm, measurement errors: saturation ratio ±0.014, GF ±0.005

Summary & Conclusion

- easy method to generate submicron Ca(HCO₃)₂, CaCO₃ (and CaO) particles in large amounts
- spherical particles with voids
- first determination of Ca(HCO₃)₂ hygroscopicity and CCN properties
 -GF(95%) = 1.03 ±0.005 (non-hygroscopic)
 -D_{act} = 130±5 nm at SS=0.2% (good CCN)
- Ca(HCO₃)₂ is persistant
- -methods probably applicable for transition metal bicarbonates, -carbonates, and –oxides (under investigation)
- can we do systematic IN studies ?

Reference: Zhao et al., ACPD, 2010, 8009-8049