

NIXE PERFORMANCE AT THE AIDA CLOUD CHAMBER: IMMERSION & DEPOSITION FREEZING EXPERIMENTS

J. Meyer¹, M. Krämer¹, A. Afchine¹, D. Baumgardner^{2,3}, R.Newton³, M.Schnaiter⁴, O.Möhler⁴, S.Benz⁴ and A.Abdelmonem⁴

¹Forschungszentrum Jülich, ICG-1, Jülich, Germany
 ² Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
 ³Droplet Measurement Technologies, Boulder, USA
 ⁴Karlsruhe Institute of Technolgy, IMK-AAF, Karlsruhe, Germany

VI-ACI Meeting, 10. May 2010

NIXE

New Ice eXpEriment - Cloud and Aerosol Particle Spectrometer

CAS-Pol + PbP: Cloud Aerosol Spectrometer

- Light Scattering Technique Particle by Particle
- Forward: particle size Backward: refractive index, shape Depolarization: asphericity

- CIP-Greyscale: Cloud Imaging Probe
 - Optical Imaging Technique Particle by Particle
 - Particle size & shape
 3 grey levels →
 improved particle visibility
 - D_p 15 900μm

D_p 0.6 - 50μm

NIXE@AIDA

OVERVIEW	COMPARISON	DEPOLARIZATION	IM. FREEZING	DEP. FREEZING	IMAGING	SUMMARY	Appendix
0000	0				0		

HALO02 & ACI03

- 29 + 43 experiments
- varying aerosol type: mineral dust (AD2, SD2) soot (GfG, CAST) coated aerosols
- water to ice transition experiments
- mixed-phase cloud conditions
- ice nucleation experiments
- instrument comparison

NIXE-WELAS COMPARISON

- often agreement for measured N
- systematic disagreement in size distribution
- comparison with other instruments needed

OVERVIEW	COMPARISON	DEPOLARIZATION	IM. FREEZING	DEP. FREEZING	IMAGING	SUMMARY	Appendix
	0	•			0		

NIXE DEPOLARIZATION SIGNAL

- aerosol & ice signal broader and larger than water signal
- aerosol, droplet & ice depolarization differ

IMMERSION FREEZING:

WATER TO ICE TRANSITION EXPERIMENTS

ightarrow homogeneous freezing of soot at $-38^{\circ}C$

DEPOSITION FREEZING:

FREEZING OF COATED PARTICLES

IÜLICH

SD2+SOA coating

- background freezing
- main ice nucleation at Koop line
- different coatings can suppress heterogeneous freezing

DEPOSITION FREEZING: IN COMPETITION

- heterogeneous freezing does not reduce RHi efficiently
- higher pump rate
- homogeneous freezing of a large number of sulphuric acid
- fast reduction of RHi

IMAGING

CIP Particle Shapes, $T=-10^{\circ}C$, Seed ICE

Dendrites

Plates

SUMMARY

- NIXE total N similar to WELAS total N
- systematic differences between size distributions \rightarrow yet to be solved
- Water & ice separation with NIXE possible
- Ice particles in water background detectable
- Immersion freezing: dust more active than soot
- Deposition freezing: coatings can suppress freezing
- separation of different ice shapes
- determination of NIXE ice fraction

DEPOSITION FREEZING:

SOOT

OVERVIEW	COMPARISON	DEPOLARIZATION	IM. FREEZING	DEP. FREEZING	IMAGING	SUMMARY	Appendix
	0				0		000

CAS-POL DESIGN

Forward/Backscatter Sensor Optical Path Diagram

- Light Scattering
- PbP
- Forward: particle size Backward: refractive index, shape
 Depolarisation: aspericity
- size range: 0.6 50μm
- calibration

OVERVIEW	COMPARISON	DEPOLARIZATION	IM. FREEZING	Dep. Freezing	IMAGING	SUMMARY	Appendix
	0				0		000

CIP DESIGN

- Optical Imaging Technique Particle by Particle (PbP)
- Particle size & shape
 3 grey levels →
 improved particle visibility
- 15 μ resolution
- size range: 15 900μm
- calibration

