Measurement campaign FROST -Results of LACIS ice experiments

Dennis Niedermeier, Susan Hartmann, the FROST-Team, and Frank Stratmann

Virtual Institute Aerosol Cloud Interaction

FROST: <u>FReezing</u> and activation abilities <u>Of</u> coated and uncoated mineral du<u>ST</u> particles

Freezing with LACIS (IfT)
Hygroscopic growth with HH-TDMA (IfT)
Activation with CCNC (IfT and University of Vienna)

- Chemical composition with AMS (University of Mainz, FZ Jülich, and IfT)
- Particle morphology through TEM-Analysis (MPI for Polymer Research, Mainz)

 First freezing measurements with LACIS
 Influence of different coatings on freezing behavior of dust particles

 Arizona Test Dust (ATD) particles D_{mob} = 300nm
 Various coatings: Uncoated, C₄H₆O₄, H₂SO₄ (50°C and 70°C), (NH₄)₂SO₄

FROST - LACIS measurement setup

$$T_{d,in} = -7^{\circ}C$$

$$T_{w,1} = 20^{\circ}C$$

$$T_{w,2} = 0^{\circ}C$$

$$T_{w,3} = 0^{\circ}C$$

$$T_{w,4} = 0^{\circ}C$$

$$T_{w,5} = 0^{\circ}C$$

$$T_{w,6} = 0^{\circ}C, \text{ variable}$$

$$T_{w,7} = \text{ variable}$$
WELAS

FROST - LACIS measurement setup

last two sections isothermal for different wall temperature adjustments

Td_{IN}=-7°C 300nm uncoated ATD

Measurements with last two sections; 300 nm uncoated ATD particles

Ice fraction for all types of particles $\rightarrow D_{mob} = 300$ nm

A fit procedure, based on a simplified CNT type nucleation rate expression was performed

Two Assumptions: 1. constant nucleation rate (constant T_s) 2. stochastic process

$$f_{\rm ice} = 1 - \exp\left(-\omega_{\rm het}t\right)$$

$$\omega_{\rm het} = \alpha \exp\left(-\frac{\beta}{T_{\rm s}^2}\right)$$

Total surface and Kinetics

hermodynamics

$$f_{\rm ice} = 1 - \exp\left(-\alpha \cdot \exp\left(-\frac{\beta}{T_{\rm s}^2}\right)t\right)$$

Ice fraction for all types of particles \rightarrow including fitted curves

- Influence of different coatings on freezing behavior of dust particles (D_{mob} = 300nm) was investigated
 Uncoated particles and those with C₄H₆O₄ or thin H₂SO₄ coatings show similar freezing behavior
 Particles with thick H₂SO₄ or with (NH₄)₂SO₄ coatings start to serve as IN at lower supercooling temperature
- A CNT-type rate expression was successfully applied to parameterize measured ice fractions
- Publications in preparation:
 - LACIS for ice nucleation studies (IfT)
 - Immersion freezing of coated/uncoated ATD
 - Determination of coating with AMS (Mainz)

FROST II

 Freezing with CFDC (CSU), PINC (ETH Zürich), FINCH (Uni Frankfurt), and LACIS (IfT)

- Hygroscopic growth with H-TDMA (FZJ)
- Activation with CCNC (IfT)

Chemical composition with AMS (University of Mainz) and ATOFMS (ETH Zürich)
 Particle morphology (IfT, MPI Mainz, ...)

FROST II (March/April 2009) and afterwards:

Influence of surface changes on IN ability \rightarrow Do surface treatments (coatings, heating, denuding) change the IN ability of ATD particles ? (YES) Influence of particles size on IN ability \rightarrow Freezing experiments with larger monodisperse ATD particles (~ 1µm) (postponed) Using new optical device to determine ice fractions (TOPF-ICE and SID) (in progress)

Treatment	Ice fraction for $T_s = 35K$
Pure ATD	5.83% (+/-3.33%)
Pure ATD + TD	3.84% (+/-2.41%)
ATD + H_2SO_4 45°C	5.12% (+/-2.98%)
ATD + H_2SO_4 45°C + TD	0.33% (+/-0.22%)
ATD + H_2SO_4 70°C	1.23% (+/-0.72%)
ATD + H_2SO_4 70°C + TD	0.06% (+/-0.03%)
ATD + H_2SO_4 70°C + H_2O bath	0.28% (+/-0.17%)
ATD + H_2SO_4 70°C + H_2O bath	0.42% (+/-0.24%)
+ TD	
ATD + H_2SO_4 70°C + H_2O bath	0.27% (+/-0.16%)
+ NH ₃	
ATD + H_2SO_4 70°C + H_2O bath	0.40% (+/-0.21%)
$+ NH_3 + TD$	

THE END

Which freezing modes occur?

Homogenous freezing?

Ice fractions for 300 nm uncoated ATD particles

Ice fraction for all types of particles $\rightarrow D_{mob} = 300$ nm

Which freezing modes occur?

Homogenous freezing \rightarrow occurs for $T_{\rm s} \ge 38 {\rm K}$

Deposition freezing ?

23

Which freezing modes occur?

Homogenous freezing \rightarrow occurs for $T_{\rm s} \ge 38 {\rm K}$

Deposition freezing

 \rightarrow excludable because of extra performed measurements

Evaporation freezing?

 $\square \longrightarrow \square \longrightarrow \bigcirc$

25

Which freezing modes occur?

Homogenous freezing \rightarrow occurs for $T_{\rm s} \ge 38 {\rm K}$

Deposition freezing

 \rightarrow excludable because of extra performed measurements

Evaporation freezing

 \rightarrow also excludable

Immersion freezing

 \rightarrow occurring heterogeneous freezing mode