

Absolute TDL Hygrometers for AIDA: Present and Future

Julian Skrotzki, S. Hunsmann, K. Wunderle, S. Wagner V. Ebert

Institute of Physical Chemistry, Heidelberg University volker.ebert@pci.uni-heidelberg.de www.gasanalysis.org

H. Saathoff

Institute for Meteorology and Climate Research, Forschungszentrum Karlsruhe

27./28. April 2009, VI-ACI annual meeting, Karlsruhe

- > AIDA TDL overview
- Brief introduction to TDLAS
- Performance of present TDLs
- Goals for future TDLs
- Performance of present and future TDLs compared
- > Summary

In situ measurement of water vapor:

- > Open path white cell with TDL absorption spectrometer (APicT)
- New: Single path TDL (SP-APicT) for high concentrations

Measurement of total water

Extractive TDL absorption spectrometer (APeT) Sampling via heated (30 °C) stainless steel tubes

Condensed water

Difference between total water and in situ water vapor

4

In situ TDL (APicT) adaptation to AIDA PCI

 Fiber coupled transfer optics outside the AIDA chamber ⇒ parasitic absorption

Technisches Messen 72, 1, 23-30 (2005) J. Geophys. Res. 110, D11210, (2005)

Extractive TDL (APeT)

- Multipath cell (Herriott type)
- Optical path length: 30.3 m
- Fiber coupled transfer optics
- Instrument housed in a purged vacuum vessel
 - \Rightarrow Minimal parasitic absorption (ambient air)

- Very good agreement between both TDLs (no matching of data)
- no data scaling, no calibration

Deviation between APicT and APeT

- Small deviation between both TDLs (absolute and relative)
- Slight overall shift over time
- Larger deviations during contraction period

reason under investigation

Good agreement between APeT and MBW

 Advantage of dual TDL system: directly comparable results – independent of external conditions

• Good agreement between TDL difference and FTIR FTIR: R. Wagner et al Atmos. Chem. Phys. 6, 4775 (2006)

PCI

Increase of dynamic range

APicT: 1-5000 ppm at present APeT: 1-1000 ppm at present

Increase of resolution

APicT: 25 ppb (-97°C FP) at present APeT: 25 ppb (-97°C FP) at present

Increase of absolute accuracy

Two possibilities for high water vapor concentrations

- Go to weaker absorption line \Rightarrow strong interference with adjacent lines
- Reduce optical path length ⇒ SP-APicT
 Additional advantage: lower scattering losses ⇒ denser clouds

Single-path APicT

- Optical path length: ~ 5m
- Fiber coupled, optics inside AIDA chamber, purged with AIDA air
- Minimal parasitic absorption

Application to in situ TDL (APicT)

- Parasitic absorption \Rightarrow corrections necessary for concentrations <1 ppm
- Quite straight forward replacement of existing optics
- \Rightarrow Increase of absolute accuracy for low water vapor concentrations

	Optical path	Dynamic range	Resolution	Time resolution
APicT (30 °C)	23-99 m	<1-1000 ppm	25 ppb -97 °C FP	1-2 s
APicT (22 °C)	23-99 m	10-5000 ppm	500 ppb -80 °C FP	1-2 s
SP-APicT (30 °C)	~ 5 m	10-7500* ppm	250* ppb -85 °C FP	1-2 s

* tbd.

Advantages of SP-APicT:

- 50% increase of upper dynamic range limit with SP-APicT
- no problems with 22°C absorption line any more ⇒ higher accuracy
- shorter optical path allows denser clouds

- 20 times stronger absorption lines
- 20 times higher sensitivity

Critical components: lasers, detectors, optical fibers etc.

solved

in progress

ΓDL performance comparison 1.4 & 2.6 μm PCI

	Optical path	Dynamic range	Resolution	Application
APicT (1.4 µm)	23-99 m	<1-1000 ppm	25 ppb -97 °C FP	Cold clouds
APicT (2.6 µm)	23-99 m	<0.1-50* ppm	1.3* ppb -111 °C FP	Very cold clouds
SP-APicT (1.4 µm)	~ 5 m	10-7500* ppm	250* ppb -85 °C FP	Warm, dense clouds
SP-APicT (2.6 µm)	~ 5 m	<1-400* ppm	13* ppb -100 °C FP	Cold, dense clouds

Planned configuration

* tbd.

Overall performance of planned insitu configuration

- Dynamic range: <0.1-7500 ppm
- Resolution: 1.3 ppb

Similar extension planned for APeT

- Present APicT and APeT give very good results, in agreement with other instruments
- SP-APicT expands dynamic range to higher water vapor concentrations and allows measurements in very dense clouds
- SP-APicT coupling optics can be applied to APicT
 ⇒ higher accuracy (minimal parasitic absorption)
- ➢ Introducion of 2.6 µm diode lasers
 ⇒ 20 times higher resolution and increased dynamic range
 ⇒ better data for very cold clouds (< -80 °C)
- Planned APicT configurations cover a large dynamic range and a wide variety of different cloud types