Role of aerosol particles as condensation and ice nuclei in tropospheric clouds

(Aerosol-Cloud Interactions VI-ACI)

VI-ACI 2nd annual meeting

27./28. April 2009

LACIS-mobile and DMT-CCNC Results from IN-11 and ACI-02

Markus Ziese, Katrin Mildenberger, Silvia Henning, Frank Stratmann

Work packages

- L2A Achievement of CCN closure for selected aerosol systems and provision of validated microphysical models / expressions and parameterizations
- M1C Validated microphysical models, expressions and parameterizations regarding CCN activation for selected aerosol systems

Set-up LACIS-mobile

- RH: up to 99.3%
- particle size:
 200nm @
 n=1.59

 measurement: at constant dry particle diameter varied relative humidity

Set-up DMT-CCNC

Investigated aerosol types – IN-11 & ACI-02

IN-11

Results

Summary IN-11

Soot type	Hygroscopic growth	Activation
GFG Ar	\checkmark	\checkmark
GFG N ₂	Ο	Ο
GFG + succinic	\checkmark	o nf
GFG + oxalic	Ο	0
CAST	\checkmark	Ο
CAST + succinic	\checkmark	o nf
CAST + sulfuric	\checkmark	\checkmark

Growth factor Max OC

Growth factor Med OC

Vergleich Wachstumsfaktoren; NAUA-Experiment 14; 28.11.2007; med OC

Growth factor Min OC

Vergleich Wachstumsfaktoren; NAUA-Experiment 9; 23.11.2007; min OC

CAST-soot coated with sulfuric acid

hygroscopic growth

activation

- hygroscopic growth increase with increasing OC-content
- activation independent from OC-content

Possible explanations for observations CAST-soot coated with sulfuric acid

(1) Does coating thickness of sulfuric acid dictate hygroscopic behavior?

selektierte Mobilitätsdurchmesser [nm]

Possible explanations for observations CAST-soot coated with sulfuric acid

(2) Fraction of soluble OC and/or chemical composition of OC (low and medium OC-content pion~2500 mol/m³, high OC-content pion~26000 mol/m³)

Soot morphology

Figure 4. Vacuum aerodynamic diameter versus mobility diameter for two equivalence ratios. For $\phi = 2.5$ (type 1 soot $d_{va} \sim 102$ nm regardless of d_m . For $\phi = 5.0$ (type 2 soot), $d_{va} = 1.3 \times d_m$.

Slowik et al. AST 2004

Possible explanations for observations CAST-soot coated with sulfuric acid

(3) Fractal dimension of soot is the important fact and NOT the fraction of soluble material?

Vergleich Wachstumsfaktoren, NAUA-Experiment 12, 27.11.2007, max OC, Partikel kompaktiert, fraktale Dimension 1.7, Vorfaktor 0.7, Packungsdichte 0.7

Possible explanations for observations CAST-soot coated with sulfuric acid

(1) Does coating thickness of sulfuric acid dictate hygroscopic behavior?

- (2) Fraction of soluble OC and/or chemical composition of OC (low and medium OC-content pion~2500 mol/m³, high OC-content pion~26000 mol/m³)
- (3) Fractal dimension of soot is the important fact and NOT the fraction of soluble material?
- (4) Sulfuric acid might react with the OC on the soot surface to organo-sulfates

Analogies to SOA experiments → does something similar to SOA form @ soot surface?

ACI02

Preliminary Results

ATD coated with H₂SO₄

CCNC: $ATD + H_2SO_4$

ATD coated with SOA

CCNC: ATD + SOA

Wish list

IN-11

• TEM-pictures from ACI-02

ACI-02

- Size distributions from NAUA and AIDA
- Coating thickness from AMS

Status

IN-11

- Data analysis completed
- Data interpretation still ongoing

ACI-02

Data analysis in progress

IN-11

Results

GFG1000-soot & succinic acid

hygroscopic growth activation 3 2.5 0.75 activated fraction growth factor 2 0.5 ٠ 1.5 0.25 . . 1 0 85 90 95 100 0.2 0.4 0.6 1.2 0 0.8 1 1.4 relative humidity [%] critical supersaturation [%]

- no full activation observed
- evaporation of succinic acid ?

GFG1000-soot coated with oxalic acid

hygroscopic growth

activation

neither hygroscopic growth nor activation
 observed

• evaporation of oxalic acid?

Uncoated Cast-soot

hygroscopic growth

activation

- similar growth to uncoated GFG-soot
- no activation observed (all OCcontents)

CAST-soot coated with succinic acid

hygroscopic growth

activation

 hygroscopic growth larger than for GFG-soot coated with succinic acid

- no full activation observed
- evaporation of succinic acid ?
- activated fraction lower than coated GFG-soot

CAST-soot coated with sulfuric acid

hygroscopic growth

activation

- hygroscopic growth increase with increasing OC-content or masked by sulfuric acid coating
- activation independent from OC-content or masked by sulfuric acid coating

<u>'Closure' between hygroscopic</u> growth and activation

• derived soluble volume fraction and κ from hygroscopic growth and activation measurements

Figure 4. Vacuum aerodynamic diameter versus mobility diameter for two equivalence ratios. For $\phi = 2.5$ (type 1 soot), $d_{va} \sim 102$ nm regardless of d_m . For $\phi = 5.0$ (type 2 soot), $d_{va} = 1.3 \times d_m$.

