University of Hertfordshire

Contributions to WP L1 (AIDA) and L2 (LACIS)

University of Hertfordshire - VI-ACI 2008

apologies!

Contributions to VI-ACI from UH

- Probes for particle characterization (size, shape).
- Light scattering computations for ice particles.

Problem: limited "shape resolution" of imaging cloud probes Examples recorded using the Manchester CPI and UH ice analogues

SEM and optical microscopy Cloud Particle Imager

Size

University of Hertfordshire - VI-ACI 2008

Solution: 2D scattering patterns

Example patterns measured from particles about 2 – 20 μ m in size

droplet

ellipsoid

salt crystal

flat grain

fibre

2D scattering patterns: ice-analogues

Hexagonal rosette

Each hexagonal column contributes a separate arc (conic section)

University of Hertfordshire - VI-ACI 2008

Small Ice Detector (SID-2) - cloud particle measurement measures "spatial" scattering patterns from single particles

SID2 – scattering patterns

Scattering patterns recorded using custom detector array (24 + 3 elements)

Polar plots: amount of light falling on detector element → plot <u>radius</u>

2D pattern from elongated particle

"Azimuthal scattering pattern"

SID2 - example scattering patterns from ice analogues

Azimuthal patterns: amount of light falling on detector element → plot <u>radius</u>

The azimuthal patterns carry information about particle shape

SID-3

- Measures high-resolution 2D patterns
- Because of this, much detail of particle geometry can be retrieved...

SID3 2D patterns - inhomogeneous particles

20 µm droplet

... with inclusion

inclusion can barely be seen in image

 $3 \ \mu m \ droplet$

... with sub-µm inclusion

even the entire droplet cannot be resolved in image

but 2D pattern is significantly altered

2D pattern is still altered

SID3 - smooth and rough crystals

Smooth and rough iceanalogue rosettes

SID-3 - design

SID-3 - close-up of head

Particle Phase Discriminator - PPD1

- Lab version of SID3
- Intended for diffusion chamber
- Delivered to Paul
 DeMott in March 2008

PPD1 - mounted in CFDC, University of Colorado

PPD2 ?

A similar instrument will be delivered to IfT Leipzig for use with LACIS in 2009.

Instrument will be enhanced by the addition of backscattering depolarization.

Example 2D scattering patterns follow...

University of Hertfordshire - VI-ACI 2008

Associated work The **RTDF** (Ray Tracing with Diffraction on Facets) scattering model,

as used for the 2D patterns, has been extended towards smaller size parameters, down to $2 - 5 \mu m$ size at visible wavelengths.

The RTDF model could in principle be used in WP M3 (climate modelling) for creating shape-dependent parametrizations of single scattering properties of ice particles.

Summary - contributions from UH

- Probes for particle characterization (size, shape):
 - provision of SID-2 for AIDA campaigns,
 - dedicated SID-3 variants for AIDA (2008) and LACIS (2009).
- Light scattering computations for the interpretation of laboratory measurements, e.g. backscattering depolarization (SIMONE, LACIS).
- Characterization and calibration of existing and new particle probes using RTDF theory and ice analogues

FUTURE:

- Continue probe and algorithm development; support campaigns.
- Probe calibration using analogues include ZINC-DIHM at ETH?
- ECHAM parametrization of scattering properties of ice using RTDF?

Need for laboratory measurements:

At present, it is not clear how 2D scattering and backscattering depolarization changes when droplets freeze. Therefore interpretation of SID-3 data and depolarization from SID-3/LACIS will be difficult.

These difficulties might be resolved by measurements on freezing droplets in EDB traps:

- 2D scattering in forward region (<25°)
- depolarization in backscattering.

Can these be done at IMK/AIDA?